with the B, C and D rings showing minor distortions from ideal geometry. The E ring is roughly planar, with C19 displaced furthest from the five-atom leastsquares plane.

An intermolecular hydrogen bond is observed between the hydroxyl group at C12, which acts a donor, and the carbonyl oxygen, O28. Associated metrical details are an $\mathrm{O} 12 \cdots \mathrm{O} 28$ distance of 2.953 (4) \AA, an $\mathrm{HOL} 2-\mathrm{O} 28$ distance of $1.96 \AA$ and an angle of 180° at hydrogen. A relatively short intermolecular contact of $3 \cdot 11$ (1) \AA between the acetonitrile methyl group carbon, C101, and the acetoxyl carboxyl oxygen, O 26 is noted. This contact, which would not exist uniformly in the crystal due to the partial occupancy observed for the acetonitrile, may explain the relatively anisotropic motion of O26 as compared to other atoms in the molecule. Apparent motion of O26 might arise from atomic rearrangement to minimize this contact at sites adjacent to the solvent.

We thank Dr Charles DeBrosse of our Analytical Chemistry Department for helpful discussions on the NMR coupling constants.

References

Faulkner, D. J. (1984). Nat. Prod. Rep. pp. 551-598.
Frenz, B. (1987). Enraf-Nonius SDP-Plus Structure Determination Package. Enraf-Nonius, Delft, The Netherlands.
Haasnoot, C. A. G., Deleuw, F. A. A. M. \& Altona, C. (1980). Tetrahedron, 36, 2783-2792.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kashman, Y. \& Rudi, A. (1977). Tetrahedron, 33, 2997-2998.
Kazlauskas, R., Murphy, P. T., Quinn, R. J. \& Wells, R. J. (1976). Tetrahedron Lett. pp. 2631-2634.

Sheldrick, G. M. (1985). SHELXS86. In Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger \& R. GodDard, pp. 175-189. Oxford Univ. Press.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
Walker, R. P., Thompson, J. E. \& Faulkner, D. J. (1980). J. Org. Chem. 45, 4976-4979.
Yasuda, F. \& Tada, M. (1981). Experientia, 37, 110-111.

Acta Cryst. (1991). C47, 1253-1256

Paucin Methanolate

By Kuar-Lin Sun, James A. Chan, Paul W. Baures and Drake S. Eggleston
Departments of Biomolecular Discovery and Physical and Structural Chemistry, SmithKline Beecham Pharmaceuticals, L-950, PO Box 1539, King of Prussia, PA 19406-0939, USA

(Received 3 October 1990; accepted 18 December 1990)

Abstract

R-(3 \mathrm{a} \alpha, 4 \mathrm{a} \beta, 7 \alpha, 7 \mathrm{a} \alpha, 8 \alpha, 9 \mathrm{a} \alpha)-7-[(6-O-\) Acetyl- β-D-glucopyranosyl)oxy]decahydro-4a, 8 -di-methyl-3-methyleneazuleno[6,5-b]furan-2,5-dione methanol solvate, $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{10} . \mathrm{CH}_{3} \mathrm{OH}, M_{r}=500 \cdot 55$, monoclinic, $P 2_{1}, a=10.819$ (5), $b=6.591$ (6), $c=$ 18.044 (8) $\AA, \beta=92 \cdot 91$ (4) ${ }^{\circ}, V=1284.9$ (11) $\AA^{3}, Z=$ 2, $\quad D_{x}=1.294 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Cu} K \alpha)=1.5406 \AA, \quad \mu=$ $8.198 \mathrm{~cm}^{-1}, F(000)=536, T=253 \mathrm{~K}, R=0.045, w R$ $=0.059$ for 1969 observations, $I \geq 3 \sigma(I)$. Paucin was isolated from the plant Hymenoxys rusbyi (Asteraceae) and crystallized from methanol. Crystals are isomorphous with those of a previously reported monohydrate. The structure was refined to a better residual. Conformational details are similar when compared to the monohydrate, but not identical. The cycloheptane ring adopts a twist-boat $\left(C_{2}\right)$ conformation. The α-methylene- γ-lactone ring adopts an envelope conformation but with C8 at the flap rather than C 7 as observed for the monohydrate. The weakest hydrogen bond from the

monohydrate structure is absent in the methanolate, otherwise the hydrogen-bonding pattern is identical in both.

Introduction. Paucin, (1), a pseudoguaianolide β-glucoside, has been isolated previously from species of Hymenoxys and Baileya (Hertz, Aota, Holub \& Samek, 1970); its crystal structure has been determined (Cox \& Sim, 1977) as a monohydrated form (PW), and refined to a crystallographic residual of 7.9%. In the course of fractionating plant products from a methylene chloride extract of Hymenoxys rusbyi, a compound was isolated which, upon crystallization from methanol, proved to have lattice parameters similar to those of the previously reported paucin monohydrate. However, since paucin is related to a large number of new and known natural-product sesquiterpene lactones and as the known compounds were analyzed under different settings, we undertook the structure determination of
these crystals to identify unequivocally their contents. We found them to contain paucin methanolate (PM).

(1)

Experimental. Colorless crystals were obtained by slow evaporation from methanol. The data crystal had approximate dimensions $0.40 \times 0.30 \times 0.20 \mathrm{~mm}$ and was mounted on a glass fiber with epoxy cement. Lattice parameters were derived from least-squares refinement of 25 reflections ($30 \leq 2 \theta \leq 35^{\circ}$) on an Enraf-Nonius CAD-4 diffractometer equipped with graphite monochromator, helium-filled beam tunnels and an FR581 liquid nitrogen cryostat. The only systematic absence was for $0 k 0$ reflections with $k \neq$ $2 n$. Intensity data ($0 \leq h \leq 12,0 \leq k \leq 7,-21 \leq l \leq$ $21,2 \theta_{\max }=135^{\circ}$) were collected in an $\omega-2 \theta$ scan mode using variable speed scans (2.5 to $13 \cdot 2^{\circ} \mathrm{min}^{-1}$). Of the 2634 intensities scanned, 2497 were unique after averaging zonal symmetry equivalents ($R_{\mathrm{int}}=$ 2.0%). Data were corrected for Lorentz and polarization effects but not for absorption. Intensities of three standard reflections ($14 \overline{4}, 4 \overline{3} 6,70 \overline{7}$) measured every three hours of exposure (16 times) were unchanged ($\pm 1.2 \%$) during data collection.

The structure was solved using SHELXS86 (Sheldrick, 1985). The y coordinate of OMe was held fixed to define the origin. Refinement by full-matrix least squares minimized the function $\sum w\left(\left|F_{o}\right|-\right.$ $\left.\left|F_{c}\right|\right)^{2}$ where the weight, w, was eventually assigned as $4 F_{o}^{2} / \sigma^{2}(I)$ with $\sigma^{2}(I)$ defined as $\left[\sigma^{2}\left(I_{c}\right)+\right.$ $\left.\left(0.04 F_{o}\right)^{2}\right]$. Non-H atoms were refined with anisotropic thermal parameters. H -atom positions, suggested from difference Fourier maps, were held fixed along with thermal factors calculated as $1.3 \times B_{\text {iso }}$ of the C or O atoms to which they were attached. An extinction coefficient refined in the latter stages to $2 \cdot 292(1) \times 10^{-6}$. In the final least-squares cycle no parameter shifted relative to its e.s.d. A final difference Fourier map showed residuals of $\pm 0 \cdot 199 \mathrm{e} \AA^{-3}$. Standard crystallographic residuals upon convergence were $R=0.0453, w R=0.059$ with GOF $=1.533$ for 316 variables and 1969 observations, $I \geq 3 \sigma(I)$. Neutral atom scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV) were used as incorporated in the locally modified version of the Enraf-Nonius SDPPlus (Frenz, 1987) which was the source of all programs. All metrical values are calculated based on

Table 1. Positional parameters and equivalent isotropic temperature factors with e.s.d.'s

	$B_{\text {eq }}=\left(8 \pi^{2} / 3\right) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.			
	x	\underline{y}	z	$B_{\text {eq }}\left(\AA^{2}\right)$
OMe	0.8830 (3)	0.262	0.7698 (2)	6.52 (9)
O2'	0.0438 (2)	1.3377 (5)	0.8851 (1)	3.87 (6)
O 2	0.2211 (2)	1.2334 (5)	0.7809 (1)	3.49 (5)
O3'	-0.0126 (2)	1.0038 (5)	0.9755 (1)	3.77 (6)
O3	0.0833 (3)	1.7470 (6)	0.4968 (2)	6.06 (8)
O4'	0.2091 (2)	0.7897 (5)	1.0359 (1)	4.36 (6)
O4	0.4675 (3)	1.0786 (6)	0.5944 (2)	6.06 (8)
O5	$0 \cdot 3096$ (2)	1.0036 (5)	0.8628 (1)	3.46 (5)
O6 ${ }^{\prime}$	0.5337 (2)	0.8294 (5)	0.9257 (2)	4.41 (6)
O7'	0.5434 (3)	0.6427 (9)	0.8263 (2)	11.8 (1)
$\mathrm{Ol2}$	$0 \cdot 0542$ (4)	1.7349 (9)	0.3747 (2)	$8 \cdot 8$ (1)
CMe	0.7708 (5)	0.358 (1)	0.7597 (4)	$9 \cdot 1$ (2)
Cl	0.2772 (3)	1.4324 (6)	0.6769 (2)	3.03 (7)
Cl^{\prime}	$0 \cdot 2366$ (3)	$1 \cdot 1839$ (6)	0.8554 (2)	3.41 (8)
C2'	$0 \cdot 1082$ (3)	$1 \cdot 1492$ (7)	0.8826 (2)	$3 \cdot 18$ (7)
C2	0.3275 (3)	1.3196 (7)	0.7471 (2)	$3 \cdot 19$ (7)
C3'	0.1119 (3)	1.0531 (7)	0.9594 (2)	$3 \cdot 38$ (6)
C3	0.4143 (4)	1.1579 (7)	0.7199 (2)	4.06 (9)
C4 ${ }^{\prime}$	$0 \cdot 1954$ (4)	0.8699 (7)	0.9620 (2)	3.44 (8)
C4	0.4261 (3)	$1 \cdot 1980$ (7)	0.6381 (2)	3.91 (9)
C5	$0 \cdot 3216$ (3)	0.9335 (7)	0.9370 (2)	3.46 (8)
C5	0.3805 (3)	1.4110 (7)	0.6210 (2)	3.39 (8)
C6'	0.4110 (4)	0.7564 (8)	0.9388 (3)	4.52 (9)
C6	0.3391 (8)	1.4403 (8)	0.5378 (2)	4.09 (9)
C7	$0 \cdot 1975$ (3)	1.4406 (8)	0.5223 (2)	3.79 (9)
C7'	0.5898 (4)	0.764 (1)	0.8674 (2)	$5 \cdot 2$ (1)
C8	$0 \cdot 1287$ (4)	1.6169 (8)	0.5579 (2)	4.28 (9)
C8'	0.7095 (4)	0.864 (1)	0.8579 (3)	7.0 (2)
C9	0.2005 (4)	1.7522 (8)	0.6125 (2)	4.33 (9)
Cl 0	0.2314 (4)	1.6503 (7)	$0 \cdot 6880$ (2)	$3 \cdot 49$ (8)
Cll	$0 \cdot 1654$ (4)	1.4667 (9)	0.4408 (2)	4.9 (1)
C12	0.0954 (5)	1.657 (1)	0.4303 (2)	6.2 (1)
C13	0.1894 (5)	1.348 (1)	$0 \cdot 3840$ (3)	7.6 (2)
C14	0.4933 (4)	1.5466 (8)	0.6391 (3)	$4 \cdot 7$ (1)
C15	$0 \cdot 1205$ (4)	1.6601 (8)	0.7368 (2)	$5 \cdot 0$ (1)

coordinates in Table 1,* which represent the results after refinement against the data with $I \geq 3 \sigma(I)$. A refinement using all 2332 data not flagged as weak in a prescan gave $R=0.055, w R=0.062$.

Discussion. The structure of paucin as found in the methanolate structure is displayed as Fig. 1. Principal bond distances are listed in Table 2. Overall stereochemistry was assigned in accord with that previously determined for PW (Cox \& Sim, 1977). The paucin molecule in the PM structure adopts a conformation quite similar to that observed in PW, but there are some differences. Valency angles in the PM cycloheptane ring cover a broader range (110.3$118.3^{\circ}$) than in PW but the average of 114.5° is the same within experimental error. As in PW, the cycloheptane ring of paucin in PM adopts a twist-boat conformation which most closely depicts the C_{2} barrier form as described by Hendrickson (1961). The Σ_{2} values, which provide a measure of the deviation from idealized symmetry. are 10 for

[^0]Table 2. Principal bond distances (\AA) with e.s.d.'s

$\mathrm{OMe}-\mathrm{CMe}$	1.375 (6)	C2--C3'	1.522 (4)
O2-C2'	1.426 (4)	C2-C3	1.518 (5)
$\mathrm{O} 2-\mathrm{Cl}^{\circ}$	1.386 (4)	$\mathrm{C} 3^{\prime}-\mathrm{C}^{\prime}$	1.507 (5)
O2-C2	1.446 (4)	C3-C4	1.511 (5)
$\mathrm{O3}^{\prime}-\mathrm{Cl}^{\prime}$	1.429 (4)	C4'-C5'	1.518 (4)
O3-C8	1.462 (5)	C4-C5	1.514 (5)
O3-C12	1.350 (5)	C5'-C6'	1.515 (5)
O4'-C4'	1.435 (4)	C5-C6	1.557 (5)
O4-C4	1.215 (4)	C5-C14	1.534 (5)
O5-C1'	1.429 (4)	C6-C7	1.544 (4)
O5-C5	1.416 (4)	C7-C8	1.539 (5)
O6-C6'	1.443 (4)	C7-C11	1.504 (5)
O6'-C7'	$1 \cdot 312$ (5)	C7'-C8'	1.469 (6)
O7'-C7 ${ }^{\prime}$	$1 \cdot 187$ (6)	C8-C9	1.513 (6)
O12-Cl2	1.193 (5)	C9--C10	1.542 (5)
$\mathrm{C} 1-\mathrm{C} 2$	1.544 (4)	$\mathrm{Cl0}-\mathrm{Cl} 5$	1.525 (5)
$\mathrm{Cl}-\mathrm{C} 5$	1.549 (4)	$\mathrm{Cl1-Cl2}$	1.473 (7)
$\mathrm{Cl}-\mathrm{Cl} 0$	1.536 (5)	$\mathrm{Cl1}-\mathrm{Cl} 3$	1.325 (7)
$\mathrm{Cl}{ }^{-} \mathrm{C}^{\prime}$	1.514 (4)		

Table 3. Sesquiterpene α-methylene- γ-lactone-ring torsion angles $\left({ }^{\circ}\right)$ in 7,8 -fused systems

Structure	Junction	ωI	$\omega 2$	$\omega 3$	$\omega 4$	$\omega 5$	$\omega 6^{*}$
I	cis	-7	11	-10	6	0	-10
III	cis	-1	12	-17	17	-11	-2
III \dagger	cis	07	-344	41	$-4-5$	38	65
IV	cis	-7	13	-13	9	-1	-2
V	cis	12	-32	38	-32	14	15
VI	cis	13	-29	33	-26	9	8
VII	cis	9	-30	38	-33	16	17
XIII	cis	-12	26	-28	21	-7	-9
IX	cis	-11	21	-22	16	-4	-9
X	cis	-5	3	0	-3	5	-4
XI	cis	-5	8	-7	5	0	-3
XII	trans	1	-13	19	-18	11	9
XIII \dagger	trans	114	$-23-19$	2424	$-18-22$	512	811
XIV	trans	11	-21	23	-17	5	6

* $\omega 6$ is the torsion angle about C11-C12 defined by the α-methylene and β-keto groups.
\dagger Two crystallographically independent molecules. I Paucin methanolate, this work: II Paucin monohydrate. Cox \& Sim (1977); III Psilotropin, Emerson, Asdjodi, Ratnapala, Subramanian \& Seff (1990); IV Hymenoxon, Pettersen \& Kim (1976); V Helenalin, Watson \& Kashyap (1990); VI Helenalin, Fronczek, Ober \& Fischer (1987); VII Bromohelenalin, Haque \& Caughlan (1969): VIII Bromomexicanin-E, Haque \& Caughlan (I967); IX Helenalin oxide, McPhail \& Onan (1975a): X Florilenalin, McPhail \& Onan (1975b); XI Autumnolide, Von Dreele, Pettit, Cragg \& Ode (1975); XII Mexicanin I. Watson \& Kashyap (1990); XIII Geigerinin; Bloszyk et al. ([989): XIV Diacetylspathulin; Inayama, Ohkura \& Iitaka (1977).

Fig. 1. ORTEP (Johnson, 1976) drawing of paucin in PM. Thermal ellipsoids are shown at the 50% probability level, H atoms as small spheres of arbitrary size.

Table 4. Hydrogen-bonding interactions in paucin methanolate

	(\AA)	(")	Symmetry operations*
OMe-O12	$2.733(5)$	177	(ii) 121
$\mathrm{HOMe}-\mathrm{O} 12$	1.82		(i) 110
$\mathrm{O} 2^{-}-\mathrm{OMe}$	$2.691(4)$	179	
$\mathrm{HO} 2^{\prime}-\mathrm{OMe}$	1.79		(ii) 012
$\mathrm{O}^{\prime}-\mathrm{O}^{\prime}$	$2.780(4)$	172	
$\mathrm{HO}^{\prime}-\mathrm{O}^{\prime}$	1.97		
$\mathrm{O}^{\prime}-\mathrm{O}^{\prime}$	$2.839(4)$	170	(i) 012
$\mathrm{HO}^{\prime}-\mathrm{O}^{\prime}$	1.92		

*Symmetry operators: (i) x, y, z; (ii) $-x, \frac{1}{2}+y,-z$. Translations are along x, y and z respectively.

Fig. 2. Unit-cell drawing for paucin methanolate. The a and c axes are shown horizontally and vertically, respectively. All atoms are drawn as small spheres of arbitrary size. Only H atoms involved in hydrogen-bonding interactions are included.

PM and 8 for PW. Individual torsion angles in the cycloheptane ring agree within $\pm 6^{\circ}$. The α-methylene- γ-lactone ring adopts an envelope conformation, as in the monohydrate, but with C 8 at the flap instead of C 7 . In the reduced temperature structure of PM this ring displays less distortion from an idealized envelope conformation. Torsion angle comparison for this lactone ring with that in other 7,8-fused systems is afforded by the values collected in Table 3. The largest differences between rings are found in the endocyclic torsion angles $\omega 4$ and $\omega 5$ $\left(11^{\circ}\right)$ as well as in the exocyclic torsion for the α-methylene- β-keto orientation (8°). Represented amongst this series are all of the general conformations expected to arise along the pathway of pseudorotational motions for this ring system, including both envelopes (I,II,IV,XII), the planar (III,X-XI) and half-chair forms (V-IX,XIII-XIV).
Hydrogen-bonding interactions (Table 4) in the PM structure involve all possible donors, as was true for PW. The hydrogen-bonding pattern involving the solvent molecule is quite similar to that observed for the monohydrate in that the acceptor of a hydrogen bond from methanol is the γ-lactone carbonyl oxygen, O12, and the methanol accepts a hydrogen bond from the glucosidic oxygen, O^{2}. In addition, glucosidic oxygens O3' and O4' donate to the same hydroxyls as in PW. The difference in hydrogenbond pattern between the two structures involves the
lack of a second H atom on methanol to act as a donor to the acetyl carbonyl oxygen, O7'. Interestingly, this missing interaction is the weakest, by distance criteria, of all the hydrogen bonds in PW and the acetyl oxygen displays a considerable wagging motion in the PM structure, reflecting its lack of constraint by the additional hydrogen bond. As may be seen in the unit-cell drawing, Fig. 2, the acetyl group sits in a cavity formed by the glucose ring and the paucin skeleton. As a result of the crystal packing, and in the absence of the second hydrogen-bonding interaction, the acetyl carbonyl group has a considerable space in which to flex.

References

Bloszyk, E., Dudek, A., Kosturkiewicz, Z., Rychlewska, U., Daniewski, W. M., Gumulka, M., Nawrot, J., Budesinsky, M., Vasickova, S. \& Holub, M. (1989). Collect. Czech. Chem. Commun. 54, 1903-1918.
Cox, P. J. \& Sim, G. A. (1977). J. Chem. Soc. Perkin Trans. 2, pp. 259-262.
Emerson, M. T., Asdjodi, M. R., Ratnapala, L. A., Subramanian, V. \& Seff, K. (1990). Acta Cryst. C46, 875-877.

Frenz, B. A. (1987). Enraf-Nonius SDP-Plus Structure Determination Package. Enraf-Nonius, Delft, The Netherlands.
Fronczek, F. R., Ober, A. G. \& Fischer, N. H. (1987). Acta Cryst. C43, 358-360.
Haque, M. \& Caughlan, C. N. (1967). J. Chem. Soc. B, pp. 355-359.
Haque, M. \& Caughlan, C. N. (1969). J. Chem. Soc. B, pp. 956-960.
Hendrickson, J. B. (1961). J. Am. Chem. Soc. 83, 4537-4547.
Hertz, W., Aota, K., Holub, M. \& Samek, Z. (1970). J. Org. Chem. 35, 2611-2615.
Inayama, S., Ohkura, T. \& IItaka, Y. (1977). Chem. Pharm. Bull. 25, 1928-1933.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
McPhail, A. T. \& Onan, K. D. (1975a). J. Chem. Soc. Perkin Trans. 2, pp. 496-500.
McPhail, A. T. \& Onan, K. D. (1975b). J. Chem. Soc. Perkin Trans. 2, pp. 492-496.
Pettersen, R. C. \& Kim, H. L. (1976). J. Chem. Soc. Perkins Trans. 2, pp. 1399-1403.
Sheldrick, G. M. (1985). SHELXS86. In Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger \& R. GodDard, pp. 175-189. Oxford Univ. Press.
Von Dreele, R. B., Pettiti, G. R., Cragg, G. M. \& Ode, R. H. (1975). J. Am. Chem. Soc. 97, 5256-5260.

Watson, W. H. \& Kashyap, R. P. (1990). Acta Cryst. C46, 1524-1528.

Acta Cryst. (1991). C47, 1256-1259

Structure of the Z Isomer of 5-(2-Chlorobenzylidene)-2,3-dihydroimidazo[2,1-b]-thiazol-6(5H)-one

By Witold Kwiatkowski and Janina Karolak-Wojciechowska
Institute of General Chemistry, Technical University, 90-924 Lodź, Poland
and Katarzyna Kieć-Kononowicz
Department of Pharmaceutical Chemistry, Medicinal Academy, Kraków, Poland

(Received 12 June 1990; accepted 4 October 1990)

Abstract

C}_{12} \mathrm{H}_{9} \mathrm{ClN}_{2} \mathrm{OS}, M_{r}=264 \cdot 73\), orthorhombic, Pbca, $a=21 \cdot 881$ (3), $b=14 \cdot 619$ (2), $c=7 \cdot 118$ (1) \AA, $V=2276.8(5) \AA^{3}, \quad Z=8, \quad D_{x}=1.544 \mathrm{~g} \mathrm{~cm}^{-3}$, $\lambda(\mathrm{Cu} K \alpha)=1.54178 \AA, \quad \mu=43.77 \mathrm{~cm}^{-1}, \quad F(000)=$ 1088, final $R=0.040$ for 887 observed reflections with $F>6 \sigma(F)$ (of 1249 unique data). The molecule is in the Z configuration and adopts a non-planar conformation with the two planar rings (benzene and thiohydantoin) forming an angle of $34 \cdot 2(2)^{\circ}$. Molecular-mechanics calculations indicate that it is not a minimum-energy conformation.

Introduction. Searching for new compounds influencing the central nervous system we have examined annelated 2-thiohydantoin derivatives of types (1), (2), (3) and (4). The derivatives of 5,5-diphenyl-2-

thiohydantoin (DPTH) [(1) and (2)] have shown sedative properties while the derivatives of 5 -benzylidene-2-thiohydantoin [of type (4)] possessed analgesic, anxiolytic, antidepressant and anticonvulsive properties (Kolasa, Kleinrok, Pietrusiewiez, Czechowski, Kieć-Kononowicz \& Zejc, 1989).

© 1991 International Union of Crystallography

[^0]: * Lists of structure factors, anisotropic thermal parameters, bond angles, bond distances and angles involving H atoms and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53851 (23 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHl 2HU, England.

